

عل نظام من معادلتين عطيتين بالتعويض

فيما سبق

درست حل نظام مكون من معادلتین خطیتین بيانيا

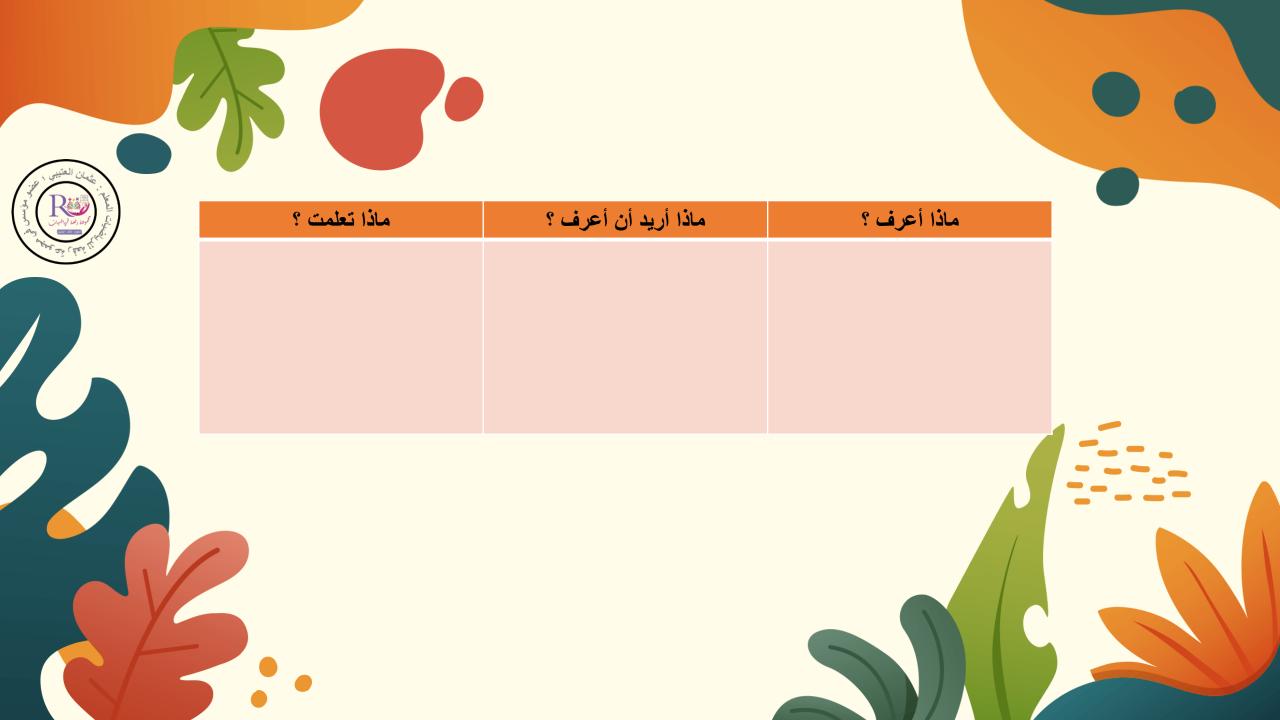
الأن

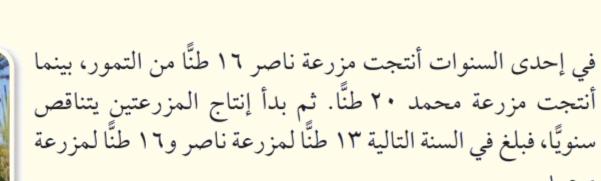
١) أحل نظاماً مكوناً من

٢) أحل مسائل من واقع

الحياة (تتضمن نظاما من

معادلتين بالتعويض.


معادلتین) باستعمال


التعويض .

التعويض

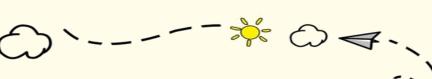
المفردات

فإذا استمر تناقص إنتاج كل من المزرعتين وفق المعدل نفسه، فمتى يتساوى الإنتاج السنوي للمزرعتين؟

الحل بالتعويض: يمكنك استعمال نظام مكوّن من معادلتين

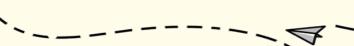
لإيجاد متى يتساوى إنتاج المزرعتين، وإحدى طرائق إيجاد الحل الدقيق لنظام المعادلات التعويض.

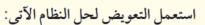
مفهوم أساسي الحل بالتعويض


الخطوة ١: حل إحدى المعادلتين على الأقل باستعمال أحد المتغيرين إذا كان ذلك ضروريًّا.

الخطوة ٢: عوِّض المقدار الناتج من الخطوة (١) في المعادلة الثانية، ثم حلها.

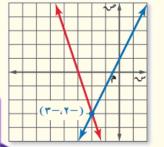
الخطوة ٣: عوِّض القيمة الناتجة من الخطوة (٢) في أي من المعادلتين وحلها لإيجاد قيمة المتغير الثاني، واكتب الحل في صورة زوج مرتب.





كا خل نظام من معادلتين بالتعويض

مثال ا

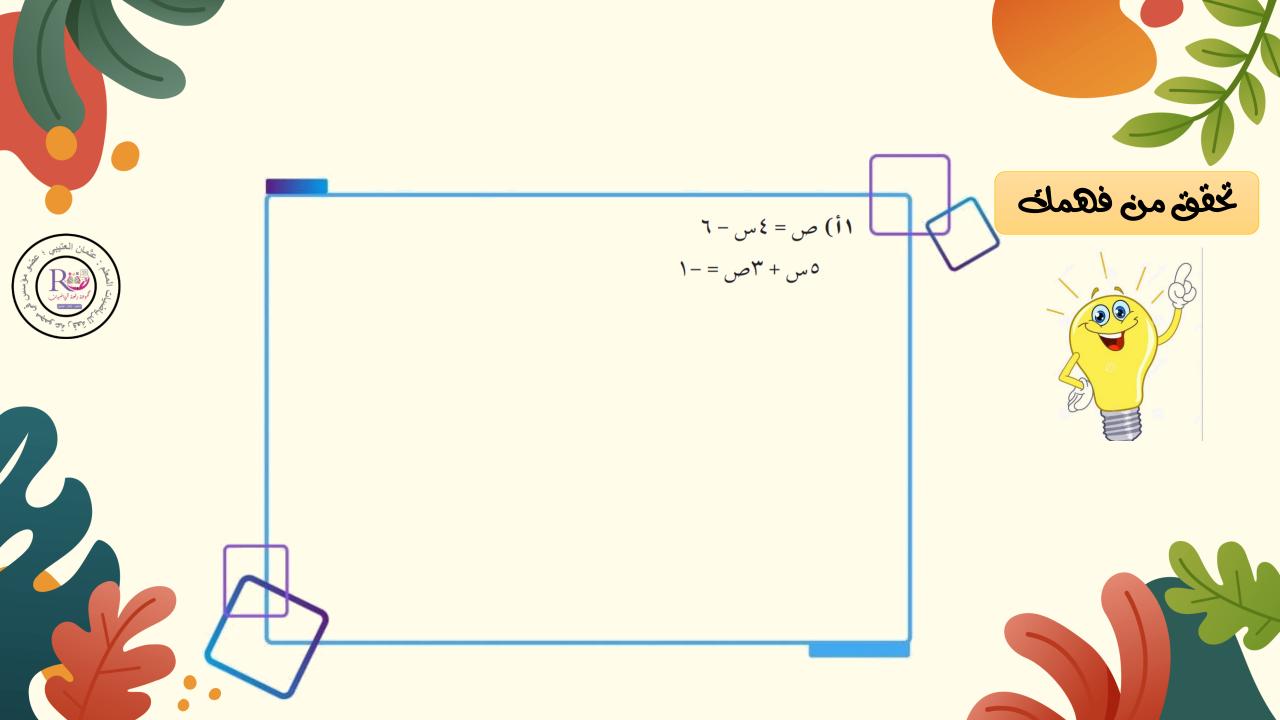


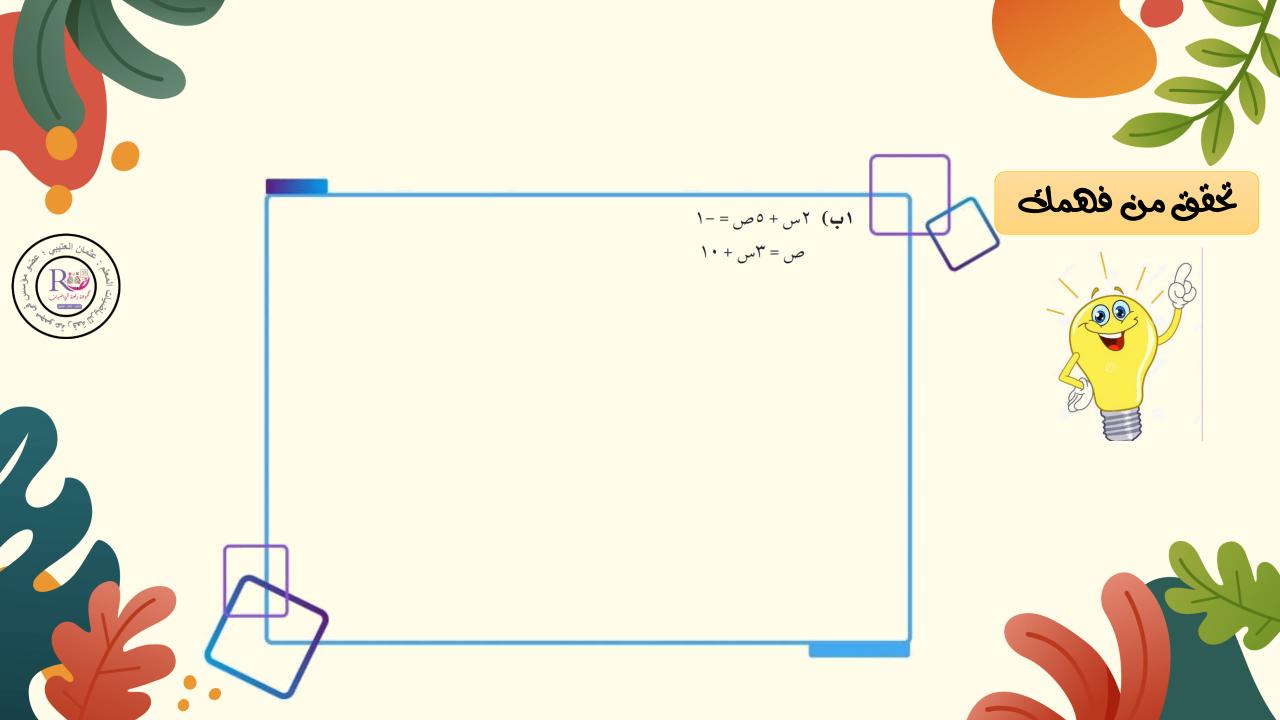
ص =
$$\mathbf{Y}$$
س + \mathbf{U} \longrightarrow الخطوة ۱: إحدى المعادلتين مكتوبة أساسًا بالنسبة إلى ص . \mathbf{Y} س + ص = $-\mathbf{P}$

الخطوة ٣: عوض - ٢ بدلًا من س في أي من المعادلتين لإيجاد قيمة ص.

$$ص = Y$$
 المعادلة الأولى

إذن الحل هو: (٢٠، ٣٠).




إرشادات للدراسة

تحقق من صحة حلك

بعد إيجاد قيم المتغيرين، عوض بهما في كلتا المعادلتين لتتحقق من صحة الحل.

استعمل التعويض لحل النظام الآتي:

س + ۲ص = ۳

٣س – ٤ ص = ٢٨

الخطوة ١: حُلَّ المعادلة الأولى بالنسبة للمتغير س لأن معامل س=١.

m + 7 س = ٦ المعادلة الأولى

m + 7 - 7 - 7 - 7 - 7

س = ٦ - ٢ص بسّط

الخطوة ٢: عوّض عن س بـ (٦-٢ص) في المعادلة الثانية لإيجاد قيمة ص.

 $\Upsilon \left(\Gamma - \Upsilon \right) - \xi = - \Upsilon$ $= - \Upsilon \left(\Gamma - \Upsilon \right)$

۱۸ – ۲ ص – ۶ ص = ۲۸ خاصية التوزيع

۱۸ - ۱۰ ص = ۲۸ اجمع الحدود المتشابهة

۱۸ - ۱۰ ص - ۱۸ = ۲۸ - ۱۸ اطرح ۱۸ من کلا الطرفین

۱۰- ص = ۱۰ سبتط

ص = - ١ اقسم كلا الطرفين على -١٠

الخطوة ٣: أوجد قيمة س بالتعويض في المعادلة الأولى.

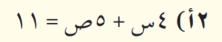
 $m + \Upsilon$ المعادلة الأولى

(1-) = (1-) Y + m

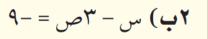
س – ۲ = ۲

 $\Lambda = \Lambda$ أضف ٢ إلى كلا الطرفين

الحل هو (۸، -۱)

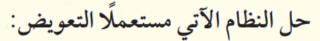


تحقق من فهمك



تحقق من فهمك

٥ س - ٢ ص = ٧


يُر كَ عدد لا نهائي من الحلول، أو لا يوجد للنظام حل

مثال ۳

إرشادات للدراسة

النظام غير المستقل

هناك عدد لا نهائي من الحلول للنظام في المثال ٣؛ لأنه عند كتابة المعادلتين بصيغة الميل والمقطع تكونان متكافئتين، ولهما التمثيل البياني نفسه.

عوض عن ص بـ (Υ س - ٤) في المعادلة الثانية.

$$17 - = (2 - \omega Y) + \omega T - \omega T$$

= - ۱ ۲ ا اجمع الحدود المتشابهة

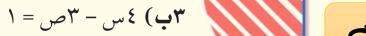
المعادلة الثانية

خاصية التوزيع

عوض عن ص بـ (٢س-٤)

بما أن الجملة الناتجة تشكل متطابقة، لذا يوجد عدد لا نهائي من الحلول.

حل كلًّا من النظامين الآتيين مستعملًا التعويض.



حل كلًّا من النظامين الآتيين مستعملًا التعويض.

۲ ص – ۸س = –۲

المعادلة الثانية

خاصية التوزيع

عوض عن جـ بـ (١٢٥ -ت)

اجمع الحدود المتشابهة

مثال ٣ من واقع أكياة

الخطوة ٢: عوض عن جـب (١٢٥ - ت) في المعادلة الثانية.

١٠٤,٩٥ جـ + ١٨,٩٥ ت = ١٨,٩٥

۱۰٤,۹٥ (۱۲۵ - ت) + ۱۸,۹٥ ت = ۲۹۲٦,۷٥

۱۹۲۲,۷۵ = ۱۸,۹۵ + ت + ۹۵,۱۳۱۱۸,۷۵ ت

1971, 00 = 1711 - 171 - 17110, 00

-۸٦ = -۱۹۲۳

ت = ۷۲

الخطوة ٣: عوض عن ت بـ (٧٢) في إحدى المعادلتين لإيجاد قيمة جـ .

جـ + ت = ١٢٥ المعادلة الأولى

جـ + ۲۷ = ۱۲۵ عوض عن ت بـ (۲۷)

جـ = ٥٣ اطرح ٧٢ من كلا الطرفين

إذن باع المتجر ٥٣ جهاز تسجيل، ٧٢ سمّاعة.

أجهزة: باع متجر أجهزة تسجيل وسماعات عددها ١٢٥ جهازًا، بسعر ١٠٤,٩٥ ريالات لجهاز التسجيل الواحد، و ١٨,٩٥ ريالًا للسمّاعة الواحدة، فإذا كان ثمن مبيعاته من هذه الأجهزة ٦٩٢٦,٧٥ ريالًا، فكم جهازًا باع من كل نوع؟

لتكن جـ= عدد أجهزة التسجيل، ت= عدد السماعات.

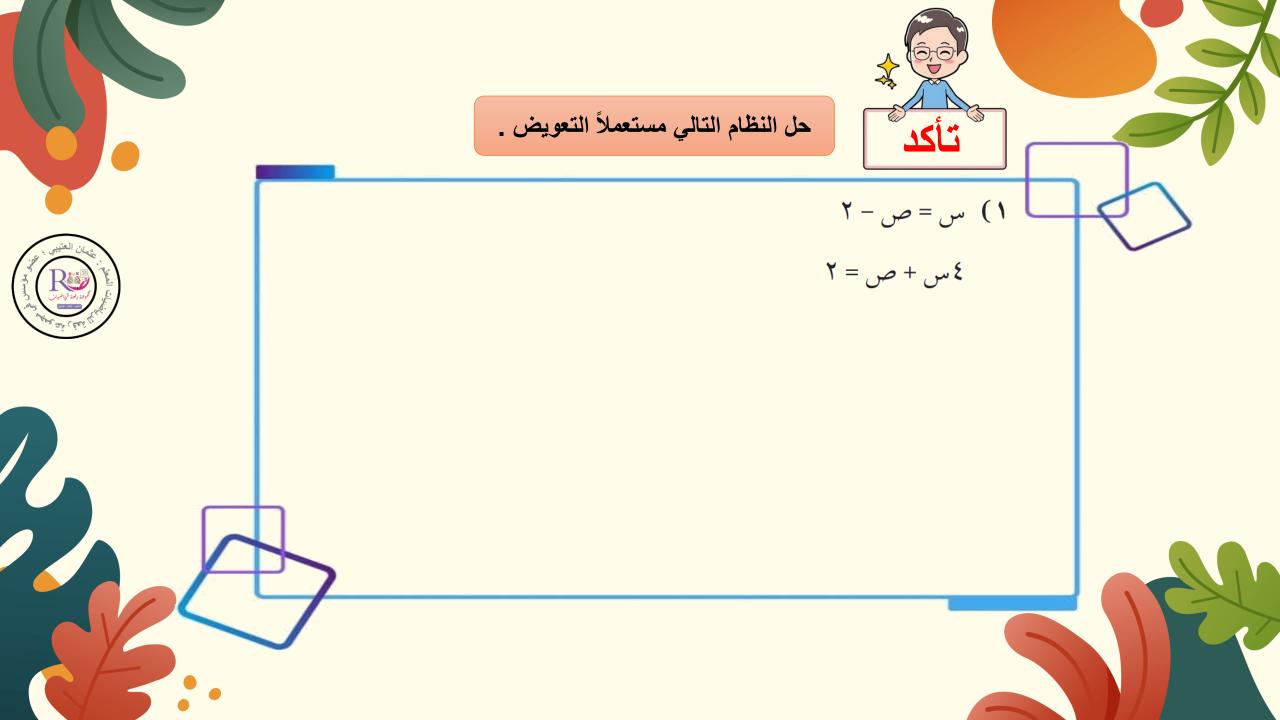
170	ت	ج	عدد الوحدات المبيعة
1977,70	ه۱۸٫۹ت	٩٥,٤٠١ج	السعر

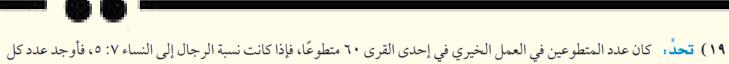
فتكون المعادلتان هما: جـ + ت = ١٠٤، ٩٥، ١٢٥ جـ + ١٨,٩٥ ت = ١٩٢٦,٧٥.

حل المعادلة الأولى بالنسبة للمتغير ج. الخطوة ١:

جـ + ت = ١٢٥ المعادلة الأولى

اطرح ت من كلا الطرفين جـ + ت - ت = ١٢٥ - ت





تحقق من فهمك

