
Kingdom of Saudi Arabia
Ministry of Higher Education

Al-Imam Muhammad ibn Saud Islamic University
College of Computer and Information Sciences

Symmetric Key Cryptography
Chapter 3

IS433 Information Security

Dr. Taher Alzahrani

 Part 1 ⎯ Cryptography
1

Chapter 3:
Symmetric Key Crypto

 Part 1 ⎯ Cryptography
2

The chief forms of beauty are order and symmetry…
⎯ Aristotle

“You boil it in sawdust: you salt it in glue:
You condense it with locusts and tape:
Still keeping one principal object in view ⎯
To preserve its symmetrical shape.”
⎯ Lewis Carroll, The Hunting of the Snark

Symmetric Key Crypto

• Stream cipher ⎯ based on one-time pad
• Except that key is relatively short
• Key is stretched into a long keystream
• Keystream is used just like a one-time pad (advantage
Provably secure but Key is to long)

• Block cipher ⎯ based on codebook concept
• Block cipher key determines a codebook
• Each key yields a different codebook
• Employs both “confusion” and “diffusion”

 Part 1 ⎯ Cryptography
3

Stream Ciphers

 Part 1 ⎯ Cryptography
4

Stream Ciphers

• Once upon a time, not so very long ago,
stream ciphers were the king of crypto

• Today, not as popular as block ciphers
• We’ll discuss two stream ciphers…
• A5/1

• Based on shift registers
• Used in GSM mobile phone system

• RC4
• Based on a changing lookup table
• Used many places

 Part 1 ⎯ Cryptography
5

A5/1: Shift Registers

• A5/1 uses 3 shift registers (LFSR)
•  X: 19 bits (x0,x1,x2,…,x18)
•  Y: 22 bits (y0,y1,y2,…,y21)
•  Z: 23 bits (z0,z1,z2,…,z22)

 Part 1 ⎯ Cryptography
6

A5/1: Keystream
• At each step: m = maj(x8, y10, z10)

• Examples: maj(0,1,0) = 0 and maj(1,1,0) = 1
•  If x8 = m then Xsteps

•  t = x13⊕x16⊕x17⊕x18
•  xi = xi-1 for i = 18,17,…,1 and x0 = t

•  If y10 = m then Ysteps
•  t = y20⊕y21
•  yi = yi-1 for i = 21,20,…,1 and y0 =t

•  If z10 = m then Zsteps
•  t = z7⊕z20⊕z21⊕z22
•  zi = zi-1 for i = 22,21,…,1 and z0 = t

• Keystreambit is x18⊕y21⊕z22

 Part 1 ⎯ Cryptography
7

A5/1

• Each variable here is a single bit
• Key is used as initial fill of registers
• Each register steps (OR NOT) based on maj(x8, y10, z10)
• Key stream bit is XOR of rightmost bits of registers

 Part 1 ⎯ Cryptography
8

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18 z19 z20 z21 z22

X	

Y	

Z	

⊕

⊕

⊕

⊕

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

A5/1

•  In this example, m = maj(x8, y10, z10)= maj(1,0,1) = 1
• Register X steps, Y does not step, and Z steps
• Keystream bit is XOR of right bits of registers
• Here, a single keystream bit will be 0 ⊕ 1 ⊕ 0 = 1

 Part 1 ⎯ Cryptography
9

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1

1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1

X	

Y	

Z	

⊕

⊕

⊕

⊕

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Shift Register Crypto

• Shift register crypto efficient in hardware
• Often, slow if implement in software
•  In the past, very popular
• Today, more is done in software due to fast
processors

• Shift register crypto still used some
• Resource-constrained devices

 Part 1 ⎯ Cryptography
10

RC4
• A self-modifying lookup table
• Table always contains a permutation of the
byte values 0,1,…,255

•  Initialize the permutation using key
• At each step, RC4 does the following

• Swaps elements in current lookup table
• Selects a key stream byte from table

• Each step of RC4 produces a byte
• Efficient in software

• Each step of A5/1 produces only a bit
• Efficient in hardware

 Part 1 ⎯ Cryptography
11

RC4 Initialization
•  Here two things we need to do:!
•  (initialize the key then issue the key)!

•  S[] is permutation of 0,1,...,255 key[]
contains N bytes of key!

!

!(1) !for i = 0 to 255!
 S[i] = i!
 K[i] = key[i (mod N)]!
! ! next i!
 j = 0!
!(2) !for i = 0 to 255!
 j = (j + S[i] + K[i]) mod 256!
 swap(S[i], S[j])!
! nexti!
 i = j = 0!

RC4 Keystream

• For each keystream byte, swap elements in table
and select byte

i = (i + 1) mod 256!
j = (j + S[i]) mod 256!
swap(S[i], S[j])!
t = (S[i] + S[j]) mod 256!
keystreamByte = S[t]!

• Use keystream bytes like a one-time pad
• Note: first 256 bytes should be discarded

• Otherwise, related key attack exists

 Part 1 ⎯ Cryptography
13

Stream Ciphers

• Stream ciphers were popular in the past
• Efficient in hardware

• Speed was needed to keep up with voice, etc.

• Today, processors are fast, so software-based crypto
is usually more than fast enough

• Future of stream ciphers?
• Shamir declared “the death of stream ciphers”

• May be greatly exaggerated…

 Part 1 ⎯ Cryptography
14

Block Ciphers

 Part 1 ⎯ Cryptography
15

(Iterated) Block Cipher

• Plaintext and ciphertext consist of fixed-sized blocks
• Ciphertext obtained from plaintext by iterating a round

function
•  Input to round function consists of key and output of

previous round
• Usually implemented in software

 Part 1 ⎯ Cryptography
16

Feistel Cipher: Encryption
• Feistel cipher is a type of block cipher, not a
specific block cipher (general approach to build a block)

• Split plaintext block into left and right halves:
 P = (L0,R0)!
• For each round i = 1,2,...,n, compute
	 Li= Ri-1	

 Ri= Li-1⊕F(Ri-1,Ki)	
where F is round function and Ki is subkey
• Ciphertext: C = (Ln,Rn)	

 Part 1 ⎯ Cryptography
17

Feistel Cipher: Decryption

• Start with ciphertext C =(Ln,Rn)	
• For each round i= n,n-1,…,1, compute
	Ri-1 = Li	
	Li-1 = Ri⊕F(Ri-1,Ki)	
where F is round function and Ki is subkey for round i
• Plaintext: P=(L0,R0)	
• Formula “works” for any function F	

• But only secure for certain functions F	

 Part 1 ⎯ Cryptography
18

Data Encryption Standard
• DES developed in 1970’s
• Based on IBM’s Lucifer cipher
• DES was U.S. government standard
• DES development was controversial

• NSA secretly involved
• Design process was secret
• Key length reduced from 128 to 56 bits
• Subtle changes to Lucifer algorithm

 Part 1 ⎯ Cryptography
19

DES Numerology

• DES is a Feistel cipher with…
•  64 bit block length

•  56 bit key length (the 8 bits can be used for error detection)
•  16 rounds
•  48 bits of key used each round (subkey)

• Each round is simple (for a block cipher)
• Security depends heavily on “S-boxes”

• Each S-boxes maps 6 bits to 4 bits

 Part 1 ⎯ Cryptography
20

L	 R	

expand shift	shift	

key	

key	

S-boxes

compress	

L	 R	

28 28

28 28

28 28

48

32

48

32

32

32

32

One
Round

 of
DES

48

32

Ki	

P box

⊕

⊕

 Part 1 ⎯ Cryptography
22

https://www.youtube.com/
watch?v=_RRr0wOjeHg

DES Expansion Permutation

•  Input 32 bits
! 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15!
!16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31!

• Output 48 bits
!31 0 1 2 3 4 3 4 5 6 7 8!
! 7 8 9 10 11 12 11 12 13 14 15 16!
!15 16 17 18 19 20 19 20 21 22 23 24!
!23 24 25 26 27 28 27 28 29 30 31 0

 Part 1 ⎯ Cryptography
23

DES S-box
•  8 “substitution boxes” or S-boxes
• Each S-box maps 6 bits to 4 bits
• S-box number 1
Suppose we have the input (0,1,2,3,4,5)

input bits (0,5)
↓ input bits (1,2,3,4)
 | 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111!
--!
00 | 1110 0100 1101 0001 0010 1111 1011 1000 0011 1010 0110 1100 0101 1001 0000 0111!
01 | 0000 1111 0111 0100 1110 0010 1101 0001 1010 0110 1100 1011 1001 0101 0011 1000!
10 | 0100 0001 1110 1000 1101 0110 0010 1011 1111 1100 1001 0111 0011 1010 0101 0000!
11 | 1111 1100 1000 0010 0100 1001 0001 0111 0101 1011 0011 1110 1010 0000 0110 1101

 Part 1 ⎯ Cryptography
24

DES P-box

•  Input 32 bits
! 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15!
!16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31!

• Output 32 bits
!15 6 19 20 28 11 27 16 0 14 22 25 4 17 30 9!
! 1 7 23 13 31 26 2 8 18 12 29 5 21 10 3 24!

 Part 1 ⎯ Cryptography
25

DES Subkey

• 56 bit DES key, numbered 0,1,2,…,55
• Left half key bits, LK
! ! !49 42 35 28 21 14 7 !
! ! ! 0 50 43 36 29 22 15!
! ! ! 8 1 51 44 37 30 23!
! ! !16 9 2 52 45 38 31!

• Right half key bits, RK!
! ! !55 48 41 34 27 20 13!
! ! ! 6 54 47 40 33 26 19!
! ! !12 5 53 46 39 32 25!
! ! !18 11 4 24 17 10 3!

 Part 1 ⎯ Cryptography
26

DES Subkey

• For rounds i=1,2,...,16!
•  Let LK = (LKcircular shift left byri)	

•  Let RK = (RKcircular shift left byri)	
•  Left half of subkeyKi is of LK bits

! !13 16 10 23 0 4 2 27 14 5 20 9!
! !22 18 11 3 25 7 15 6 26 19 12 1!

• Right half of subkeyKi is RK bits!
! !12 23 2 8 18 26 1 11 22 16 4 19!
! !15 20 10 27 5 24 17 13 21 7 0 3!

 Part 1 ⎯ Cryptography
27

DES Subkey

• For rounds 1, 2, 9 and 16 the shift ri is 1, and in all
other rounds ri is 2	

• Bits 8,17,21,24 of LK omitted each round
• Bits 6,9,14,25 of RK omitted each round
• Compression permutation yields 48 bit subkey Ki
from 56 bits of LK and RK!

• Key schedule generates subkey

 Part 1 ⎯ Cryptography
28

DES Last Word (Almost)

• An initial permutation before round 1
• Halves are swapped after last round

• A final permutation (inverse of initial perm) applied to
(R16,L16)!

• None of this serves security purpose

 Part 1 ⎯ Cryptography
29

Security of DES

• Security depends heavily on S-boxes
• Everything else in DES is linear (easy to solve)

• Thirty+ years of intense analysis has revealed
no “back door”

• Attacks, essentially exhaustive key search
•  Inescapable conclusions

• Designers of DES knew what they were doing
• Designers of DES were way ahead of their time

 Part 1 ⎯ Cryptography
30

Block Cipher Notation

• P = plaintext block
• C =ciphertext block
• Encrypt P with key K to get ciphertextC

• C = E(P, K)	
• Decrypt C with key K to get plaintext P

•  P = D(C, K)	
• Note: P = D(E(P, K), K) and C = E(D(C, K), K)	

• But P ≠ D(E(P, K1), K2) and C ≠ E(D(C, K1), K2) when
K1≠K2	

 Part 1 ⎯ Cryptography
31

Triple DES

• Today, 56 bit DES key is too small
• Exhaustive key search is feasible

• But DES is everywhere, so what to do?
• Triple DES or 3DES (112 bit key)

• C = E(D(E(P,K1),K2),K1)	
•  P = D(E(D(C,K1),K2),K1)	

• Why Encrypt-Decrypt-Encrypt with 2 keys?
• Backward compatible: E(D(E(P,K),K),K) = E(P,K)
• And 112 bits is enough	

 Part 1 ⎯ Cryptography
32

3DES
• Why not C = E(E(P,K),K) ?

• Trick question --- it’s still just 56 bit key

• Why not C = E(E(P,K1),K2) ?
• A (semi-practical) known plaintext attack

• Pre-compute table of E(P,K1) for every possible key K1
(resulting table has 256 entries)

• Then for each possible K2 compute D(C,K2) until a
match in table is found

• When match is found, have E(P,K1) = D(C,K2)	
• Result gives us keys: C = E(E(P,K1),K2)	

 Part 1 ⎯ Cryptography
33

Advanced Encryption Standard

• Replacement for DES
• AES competition (late 90’s)

•  NSA openly involved
•  Transparent process
•  Many strong algorithms proposed
•  Rijndael Algorithm ultimately selected (pronounced like

“Rain Doll” or “Rhine Doll”)
•  Iterated block cipher (like DES)
• Not a Feistel cipher (unlike DES)
Feistel cipher is easy to decrypt if you know the key
(because of XOR)

 Part 1 ⎯ Cryptography
34

AES Overview
• Block size:128 bits (others in Rijndael)
• Key length: 128, 192 or 256 bits (independent of block

size)
•  10 to 14 rounds (depends on key length)
• Each round uses 4 functions (3 “layers”)

• ByteSub (nonlinear layer)
• ShiftRow (linear mixing layer)
• MixColumn (nonlinear layer)
• AddRoundKey (key addition layer)

 Part 1 ⎯ Cryptography
35

AES ByteSub

• ByteSub is AES’s “S-box”
• Can be viewed as nonlinear (but invertible)
composition of two math operations

 Part 1 ⎯ Cryptography
36

q Treat 128 bit block as 4x6 byte array

AES “S-box”

 Part 1 ⎯ Cryptography
37

First 4
bits of
input

Last 4 bits of input

AES ShiftRow

• Cyclic shift rows

 Part 1 ⎯ Cryptography
38

AES MixColumn

•  Implemented as a (big) lookup table

 Part 1 ⎯ Cryptography
39

q Invertible, linear operation applied to
each column

AES AddRoundKey

• RoundKey (subkey) determined by key schedule
algorithm

 Part 1 ⎯ Cryptography
40

q XOR subkey with block

Block Subkey

AES Decryption

• To decrypt, process must be invertible
•  Inverse of MixAddRoundKey is easy, since “⊕”is
its own inverse

• MixColumn is invertible (inverse is also
implemented as a lookup table)

•  Inverse of ShiftRow is easy (cyclic shift the other
direction)

• ByteSub is invertible (inverse is also implemented
as a lookup table)

 Part 1 ⎯ Cryptography
41

Symmetric key crypto

 Part 1 ⎯ Cryptography
42

Block Cipher Stream Cipher

Feistel A5\1

DES RC4

AES

TEA

 Part 1 ⎯ Cryptography
43

Round Text

Key

16 64 56 DES

3Triple each 16 round 112 112 3DES

10-14 128 128,192,256 AES

variable 64 128 TEA

Block Cipher Modes

 Part 1 ⎯ Cryptography
44

Multiple Blocks

• How to encrypt multiple blocks?
• Do we need a new key for each block?

• As bad as (or worse than) a one-time pad!

• Encrypt each block independently?
• Make encryption depend on previous block?

•  That is, can we “chain” the blocks together?

• How to handle partial blocks?
• We won’t discuss this issue

 Part 1 ⎯ Cryptography
45

Modes of Operation
• Many modes ⎯ we discuss 3 most popular
• Electronic Codebook (ECB) mode

• Encrypt each block independently
• Most obvious, but has a serious weakness

• Cipher Block Chaining (CBC) mode
• Chain the blocks together
• More secure than ECB, virtually no extra work

• Counter Mode (CTR) mode
• Block ciphers acts like a stream cipher
• Popular for random access

 Part 1 ⎯ Cryptography
46

ECB Mode
• Notation: C = E(P,K)	
• Given plaintext P0,P1,…,Pm,…	
• Most obvious way to use a block cipher:
 Encrypt Decrypt
	C0 = E(P0, K)	 	P0 = D(C0, K) 	
	C1 = E(P1, K)	 	P1 = D(C1, K)	
	C2 = E(P2, K) … 	P2 = D(C2, K) …	

• For fixed key K, this is “electronic” version of a
codebook cipher (without additive)
• With a different codebook for each key

 Part 1 ⎯ Cryptography
47

ECB Cut and Paste
• Suppose plaintext is
! !Alice digs Bob. Trudy digs Tom.!
• Assuming 64-bit blocks and 8-bit ASCII:
P0 = “Alice di”, P1 = “gs Bob. ”,!
P2 = “Trudy di”, P3 = “gs Tom. ”	
• Ciphertext: C0,C1,C2,C3	
• Trudy cuts and pastes: C0,C3,C2,C1	
• Decrypts as
! !Alice digs Tom. Trudy digs Bob.!

 Part 1 ⎯ Cryptography
48

ECB Weakness

• Suppose Pi = Pj	
• Then Ci= Cj and Trudy knows Pi = Pj

• This gives Trudy some information, even if she does not
know Pi or Pj!

• Trudy might know Pi	

•  Is this a serious issue?

 Part 1 ⎯ Cryptography
49

Alice Hates ECB Mode
• Alice’s uncompressed image, and ECB encrypted (TEA)

 Part 1 ⎯ Cryptography
50

q  Why does this happen?
q  Same plaintext yields same ciphertext!

CBC Mode
• Blocks are “chained” together
• A random initialization vector, or IV, is required
to initialize CBC mode

• IV is random, but not secret
 Encryption Decryption!
 C0 = E(IV ⊕P0, K), 	 	P0 = IV ⊕D(C0, K),	
	C1 = E(C0 ⊕P1, K), 	 	 	P1 = C0 ⊕D(C1, K),	
	C2 = E(C1 ⊕P2, K),… 	 	P2 = C1 ⊕D(C2, K),…	

• Analogous to classic codebook with additive

 Part 1 ⎯ Cryptography
51

CBC Mode

•  Identical plaintext blocks yield different ciphertext
blocks ⎯ this is good!

•  If C1 is garbled to, say, G then
 P1 ≠C0 ⊕D(G, K), P2 ≠G ⊕D(C2, K)	
• But P3 = C2 ⊕D(C3, K), P4 = C3 ⊕D(C4, K),…	

• Automatically recovers from errors!
• Cut and paste is still possible, but more complex
(and will cause garbles)

 Part 1 ⎯ Cryptography
52

Alice Likes CBC Mode
• Alice’s uncompressed image, Alice CBC encrypted (TEA)

 Part 1 ⎯ Cryptography
53

q  Why does this happen?
q  Same plaintext yields different ciphertext!

Counter Mode (CTR)

• CTR is popular for random access
• Use block cipher like a stream cipher
 Encryption Decryption
	C0 = P0 ⊕E(IV, K), 	 	 	P0 = C0 ⊕E(IV, K),	
	C1 = P1 ⊕E(IV+1, K), 	 	P1 = C1 ⊕E(IV+1, K),	
	C2 = P2 ⊕E(IV+2, K),… 	 	P2 = C2 ⊕E(IV+2, K),…	
!

• CBC can also be used for random access
• With a significant limitation…

 Part 1 ⎯ Cryptography
54

Integrity

 Part 1 ⎯ Cryptography
55

Data Integrity

•  Integrity⎯ detect unauthorized writing (i.e.,
modification of data)

• Example: Inter-bank fund transfers
• Confidentiality may be nice, integrity is critical

• Encryption provides confidentiality (prevents
unauthorized disclosure)

• Encryption alone does not provide integrity
• One-time pad, ECB cut-and-paste, etc.

 Part 1 ⎯ Cryptography
56

MAC

• Message Authentication Code (MAC)
•  Used for data integrity
•  Integrity not the same as confidentiality

• MAC is computed as CBC residue
•  That is, compute CBC encryption, saving only final ciphertext block,

the MAC	

 Part 1 ⎯ Cryptography
57

MAC Computation
• MAC computation (assuming N blocks)!
 C0 = E(IV ⊕P0, K),	
	C1 = E(C0 ⊕P1, K),	
	C2 = E(C1 ⊕P2, K),…	
	CN-1 = E(CN-2 ⊕PN-1, K) = MAC	

• MAC sent with IV and plaintext
• Receiver does same computation and verifies that result

agrees with MAC
• Note: receiver must know the key K

 Part 1 ⎯ Cryptography
58

Does a MAC work?
• Suppose Alice has 4 plaintext blocks
• Alice computes!
	C0= E(IV⊕P0,K), C1= E(C0⊕P1,K),	
	C2= E(C1⊕P2,K), C3= E(C2⊕P3,K) = MAC	

• Alice sends IV,P0,P1,P2,P3and MAC to Bob
• Suppose Trudy changes P1 to X	
• Bob computes
C0= E(IV⊕P0,K), C1= E(C0⊕X,K),	
C2= E(C1⊕P2,K), C3= E(C2⊕P3,K) = MAC≠MAC	
• That is, error propagates into MAC
• Trudy can’t make MAC == MAC without K

 Part 1 ⎯ Cryptography
59

Confidentiality and Integrity

• Encrypt with one key, MAC with another key
• Why not use the same key?

• Send last encrypted block (MAC) twice?
• This cannot add any security!

• Using different keys to encrypt and compute MAC
works, even if keys are related
• But, twice as much work as encryption alone
• Can do a little better ⎯about 1.5 “encryptions”

• Confidentiality and integrity with same work as one
encryption is a research topic

 Part 1 ⎯ Cryptography
60

Uses for Symmetric Crypto

• Confidentiality
•  Transmitting data over insecure channel
•  Secure storage on insecure media

•  Integrity (MAC)
• Authentication protocols (later…)
• Anything you can do with a hash function (upcoming

chapter…)

 Part 1 ⎯ Cryptography
61

