

رتبوا الصباح لبدايت جديدة ، عيشوا في اشراقت وقتاً لطيفاً

تحليل التمثيلات البيانية للدوال والعلاقات

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

التماثل حول نقطة point symmetry الدالة الزوجية even function الدالة الفردية odd function

الأصفار zeros الجذور roots التماثل حول مستقيم line symmetry

- أستعملُ التمثيل البياني لتقدير قيم الدالة، وإيجاد مجالها، ومداها، ومقطعها لا، وأصفارها.
- أستكشف تماثل منحنيات الدوال، وأحدد الدوال الزوجية والدوال الفردية.

درست الدوال وكيفية إيجاد قيمها. (الدرس 1-1)

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

تُولى المملكة أهمية متزايدة للقطاع الصحى، وينعكس ذلك على الميزانية المخصصة له. فمثلًا يمكن تقدير مخصصات الصحة والهلال الأحمر (بمليارات الريالات) خلال الفترة من (1440 – 1433) هـ بالدالة:

 $f(x) = -0.0015x^4 + 0.0145x^3 + 0.3079x^2 - 0.5654x + 14.07$, $1 \le x \le 8$

حيث تمثل x رقم السنة منذ عام 1433هـ . ويساعدك التمثيل البياني لهذه الدالة على فهم العلاقات بين المتغيرات في هذا الموقف الحياتي.

1884/ التاريخ:

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

تقدير قيم الدوال

مخصصات الصحة والهلال الأحمر

السنوات منذ 1432هـ

🧌 مثال 1 من واقع الحياة

مخصصات: استعمل التمثيل البياني المجاور للدالة f الواردة في فقرة "لماذا؟" للإجابة عمَّا يأتي:

a) قدر قيمة المخصصات سنة 1438 هـ، ثم تحقّق من إجابتك جبريًّا.

السنة 1438 هـ هي السنة السادسة بعد 1432 هـ، لذا تُقدَّر قيمة الدالَة عند x = 6 بـ 23 مليار ريال، وعليه تكون المخصصات سنة 1438هـ هي 23 مليار ريال تقريبًا.

> f(6) وللتحقَّق من ذلك جبريًّا، أو جد قيمة بالتعويض في الدالة.

 $f(6) = -0.0015(6)^4 + 0.0145(6)^3 +$ $0.3079(6)^2 - 0.5654(6) + 14.07 \approx 22.95$

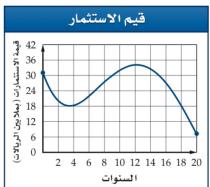
لذا يُعدُّ التقريب 23 مليارًا باستعمال التمثيل البياني معقولًا.

ل قدر السنة التي كانت فيها قيمة المخصصات 15 مليار ريال، ثم تحقَّق من إجابتك جبريًّا.

يُبين التمثيل البياني أن قيمة الدالة تكون 15 مليارًا عندما تكون قيمة x قريبة من العدد x ، لذا تكون أيبين التمثيل البياني المخصصات 15 مليارًا في سنة 1435 هـ . وللتحقق جبريًّا أو جد f(3) .

 $f(3) = -0.0015(3)^4 + 0.0145(3)^3 + 0.3079(3)^2 - 0.5654(3) + 14.07 \approx 15.4149$ لذا تعد السنة التقريسة 1435هـ معقولة.

إقرأ المثال وتأمل طريقة الحل



1224/ التاريخ: /

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

ا استثمار: تمثل الدالة: $v(d) = 0.002d^4 - 0.11d^3 + 1.77d^2 - 8.6d + 31, 0 \le d \le 20$ تقديرًا (1 لاستثمارات أحد رجال الأعمال في السوق المحلية؛ حيث v(d) قيمة الاستثمارات بملايين الريالات في

- 1A) استعمل التمثيل البياني لتقدير قيمة الاستثمارات في السنة العاشرة. ثم تحقّق من إجابتك جبريًّا.
- 1B) استعمل التمثيل البياني لتحديد السنوات التي بلغت فيها قيمة الاستثمارات 30 مليون ريال. ثم تحقّق من إجابتك جبريًّا.

1227/ التاريخ:

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

إيجاد المجال والمدى

مـثال 2

أوجد مجال الدالة f ومداها باستعمال التمثيل البياني المجاور .

المجال:

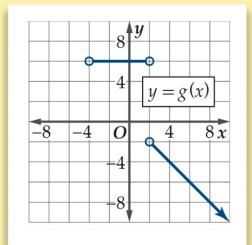
- x = -8 على أن المجال يبدأ عند (-8, -10) على عند النقطة عند (-8, -10)
- . f الدائرة عند النقطة (-4,4) على أن x=-4 ليست في مجال
- يدل السهم على الجهة اليمني من المنحني على استمرارية المنحني من اليمين دون حدود (دون توقف).

مما سبق يكون مجال الدالة f هو $(-4,\infty)$ \cup $(-4,\infty)$. وباستعمال الصفة المميزة للمجموعة يكون المجال . $\{x \mid x \ge -8, x \ne -4, x \in R\}$ هو

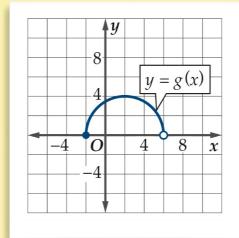
المدى:

إن أقل قيمة للدالة هي f(-8) أو f(-8) ، وتزداد قيم f(x) بلا حدود عندما تزداد قيم x ، لذا فإن مدى الدالة f هو . [−10, ∞)

إقرأ المثال وتأمل طريقة الحل



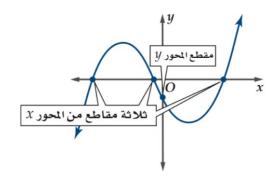
لايقتصر استعمال منحنى الدالة على تقدير قيمها إذ من الممكن استعماله لإيجاد المجال والمدئ للدالة



موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

(2B

(2A



التاريخ: / 1227/

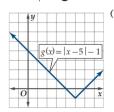
موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

النقطة التي يتقاطع عندها المنحنى مع المحور x أو المحور y تسمى المقطع من ذلك المحور. ويمكن الحصول على المقطع x بتعويض عن y=0 في معادلة الدالة، كما يمكن الحصول على المقطع y بالتعويض عن y=0 في معادلة الدالة. وبشكل عام فإنه ليس من الضّروري أن يكون للدالة مقطع x، وقد يكون هناك مقطع x واحد أو أكثر، وأما بالنسبة للمقطع y فإن للدالة مقطع واحد على الأكثر.

1227/ التاريخ:

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

إرشادات للدراسة


انظر المثال 3a:

تدريج المحورين x,y إذا لم يظهر التدريج على المحورين x , y في التمثيل البياني، فذلك يعني أن التدريج بالوحدات.

-4-3-2-10 1 2 3 4x

ايجاد المقطع y

استعمل التمثيل البياني لكل من الدالتين أدناه، لإيجاد قيمة تقريبية للمقطع y، ثم أوجده جبريًّا:

التقدير من التمثيل البياني:

يتضح من الشكل أن g(x) يقطع المحور y عند النقطة (0,4) ، وعليه فإن المقطع y

التقدير من التمثيل البياني:

y يقطع المحور الشكل أن f(x) يقطع المحور عند النقطة $(0, 1\frac{1}{3})$ تقريبًا، وعليه فإن المقطع هو $\frac{1}{3}$ تقریبًا.

الحل جبريًّا:

أوجد قيمة (9)g.

$$g(\mathbf{0}) = |\mathbf{0} - 5| - 1 = 4$$

أي أن المقطع y هو 4.

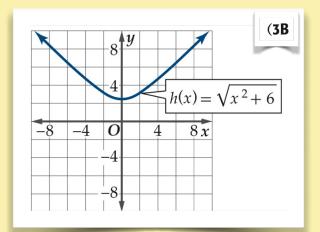
الحل جبريًّا:

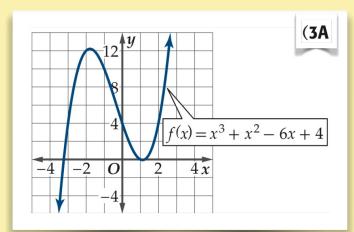
. f(0) أوجد قيمة

$$f(0) = \frac{-2(0)^3 + 4}{3} = \frac{4}{3} = 1\frac{1}{3}$$

أي أن المقطع y هو $\frac{4}{3}$ أو $\frac{1}{3}$.

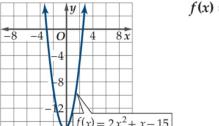
إقرأ المثال وتأمل طريقة الحل





التاريخ: / ١٤٤٣/

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات



1224/ التاريخ: /

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

إيجاد الأصفار

مـثال 4

 $f(x) = 2x^2 + x - 15$ المجاور، الذي يمثل الدالة لإيجاد قيم تقريبيّة لأصفارها، ثم أوجد هذه الأصفار جبريًّا.

التقدير من المنحني:

يتضح من التمثيل البياني أن مقطعي المحور x هما 3-6 تقريبًا. لذا فإن صفري الدالة f هما g و 2.5

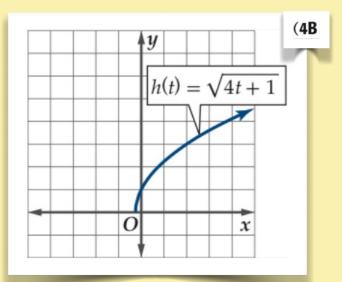
الحل جبريًّا:

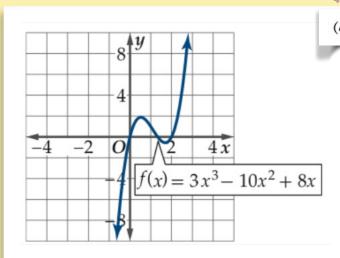
$$f(x) = 0$$
 ضع $2x^2 + x - 15 = 0$
 $(2x - 5)(x + 3) = 0$

أو
$$x + 3 = 0$$
 أو $2x - 5 = 0$

أو
$$x=-3$$
 حل كل معادلة $x=2.5$

إقرأ المثال وتأمل طريقة الحل




تسمى المقاطع X لمنحنى الدالة أصفار الدالة وتسمئ حلول المعادلة المرافقة للدادة جذور المعادلة ولإيجاد أصفار f(x)=0 الدالة f ، فإننا نحل المعادلة بالنسبة للمتغير المستقل.

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

التاريخ: / 1227/


موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

التماثل: يوجد لتمثيلات العلاقات البيانية نوعان من التماثل: التماثل حول مستقيم، حيث يمكن طي الشكل على المستقيم لينطبق نصفا المنحني تمامًا ، و التماثل حول نقطة أي إذا تم تدوير الشكل بزاوية قياسها °180 حول النقطة فإنه لا يتغير. وفيما يأتي تلخيص لأهم أنواع التماثل:

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

إرشادات للدراسة

تماثل العلاقات والدوال: يكون التماثل حول المحور x للعلاقات فقط. أما التماثل حول المحور y ونقطة الأصل فيكون للعلاقات والدوال.

	لتماثل	مفهوم اساسي اختبارات ا
الاختبار الجبري	النموذج	اختبار التمثيل البياني
y إذا كان تعويض $-y$ مكان y يعطي معادلة مكافئة .	y (x, y) x	يكون تمثيل العلاقة البياني متماثلًا حول المحور x، إذا وفقط إذا تحقق الشرط التالي: إذا كانت النقطة (x, y) واقعة على التمثيل البياني، فإن النقطة (x, -y) تقع عليه أيضًا.
xإذا كان تعويض $x-$ مكان x يعطي معادلة مكافئة .	(-x,y) (x,y)	يكون تمثيل العلاقة البياني متماثلًا حول المحور y، إذا وفقط إذا تحقق الشرط التالي: إذا كانت النقطة (x, y) واقعة على التمثيل البياني، فإن النقطة (-x, y) تقع عليه أيضًا.
xإذا كان تعويض x مكان x و y مكان y يعطي معادلة مكافئة.	(-x, -y)	يكون تمثيل العلاقة البياني متماثلًا حول نقطة الأصل، إذا وفقط إذا تحقق الشرط التالي: إذا كانت النقطة (x, y) واقعة على التمثيل البياني، فإن النقطة (-x, -y) تقع عليه أيضًا.

1227/ موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات التاريخ: /

إقرأ المثال وتأمل طريقة الحل

إرشادات للدراسة

من الممكن أن يكون للتمثيل البياني الواحد أكثر من نوع

xy = 4 (**b**

التحليل بيانيًّا:

يتضح من التمثيل البياني أن المنحنى متماثل حول نقطة الأصل؛ لأنه لكل نقطة (x,y) على المنحنى، فإن النقطة (x,y) تقع أيضًا على المنحنى.

التعزيز عدديًا:

يبين الجدول الآتي وجود تماثل حول نقطة الأصل:

x	-8	-2	-0.5	0.5	2	8
y	-0.5	-2	-8	8	2	0.5
(x, y)	(-8, -0.5)	(-2, -2)	(-0.5, -8)	(0.5, 8)	(2, 2)	(8, 0.5)

التحقق جبريًّا:

بما أن المعادلة (-x)(-y)=4 تكافئ xy=4، فإن المنحنى متماثل حول نقطة الأصل.

اختبار التماثل

استعمل التمثيل البياني لكل من المعادلتين الآتيتين الاختبار التماثل حول المحور x والمحور y ونقطة الأصل. عرَّز إجابتك عدديًّا، ثم يحقق منها جبريًّا.

$x - y^2 = 1 \quad (\mathbf{a}$

مـثال 5

التحليل بيانيًا:

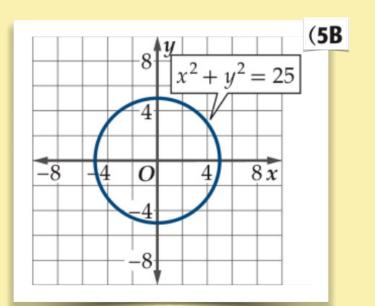
يتضح من التمثيل البياني أن المنحنى متماثل حول المحور x؛ لأنه لكل نقطة (x,y) على المنحنى، فإن النقطة (x,y) تقع أيضًا على المنحنى.

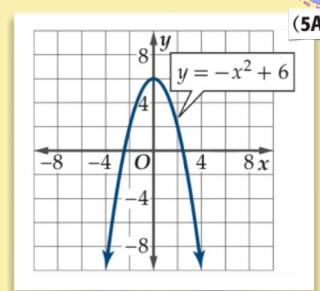
التعزيز عدديًا:

يبين الجدول أدناه وجود تماثل حول المحور x :

х	2	2	5	5	10	10
y	1	-1	2	-2	3	-3
(x, y)	(2, 1)	(2, -1)	(5, 2)	(5, -2)	(10, 3)	(10, -3)

التحقق جبريًّا:


. x منان المعادلة $x-(-y)^2=1$ تكافئ $x-y^2=1$ نيان المنحنى متماثل حول المحور بما أن المعادلة بما المحور بما أن المعادلة بما المحور بما أن المعادلة بما المحور بما أن المحور بما أن



موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

مفهوم أساسي الدوال الزوجية والدوال الفردية			
الاختبار الجبري	نوع الدالة		
f(-x)=f(x) لكل x في مجال f ، فإن	تُسمى الدوال المتماثلة حول المحور y الدوال الزوجية.		
f(-x) = -f(x) لکل x في مجال f ، فإن	تُسمى الدوال المتماثلة حول نقطة الأصل <mark>الدوال الفردية</mark> .		

يمكن أن تتماثل منحنيات الدوال حول الحور y فقط أو حول نقطة الأصل فقط ، ولهذين النوعين من الدوال اسمان خاصتن

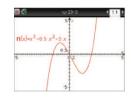
موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

f1(x)=x3-2:x

إقرأ المثال وتأمل طريقة الحل

$f(x) = x^* + 2 \quad (\mathbf{b}$

يتضح من التمثيل البياني أن الدالة متماثلة حول المحور y، لذا فهي دالة زوجية، وللتحقق من ذلك جبريًّا نجد:


$$x$$
عوض $-x$ مکان $f(-x) = (-x)^4 + 2$

$$= x^4 + 2$$

$$f(x) = x^4 + 2$$
 الدالة الأصلية = $f(x)$

f(-x) = f(x) أي أن الدالة زوجية؛ لأن

$f(x) = x^3 - 0.5 x^2 - 3x$ (c

يتضح من التمثيل البياني أن الدالة ليست متماثلة حول المحور y وليست متماثلة حول نقطة الأصل، وللتحقق من ذلك جبريًّا نجد: $f(-x) = (-x)^3 - 0.5(-x)^2 - 3(-x)$ $= -x^3 - 0.5x^2 + 3x$ سفد

وبما أن $-f(x) = -x^3 + 0.5x^2 + 3x$ فإن $+f(-x) \neq -f(x)$ وكذلك $+f(-x) \neq -f(x)$ لذا فالدالة ليست زوجية وليست فردية.

تحديد الدوال الزوجية والدوال الفردية

مـثال 6

استعمل الحاسبة البيانية لتمثل كل دالة مما يأتي بيانيًّا. ثمَّ حلّل منحناها لتحدّد إن كانت الدالة زوجية أم فردية أم غير ذلك. ثم تحقّق من إجابتك جبريًّا.

$$f(x) = x^3 - 2x \quad (a$$

يتضح من التمثيل البياني أن الدالة متماثلة حول نقطة الأصل، لذا فهي دالة فردية، وللتحقق من ذلك جبريًّا نجد:

$$x$$
عوض $-x$ معان $f(-x) = (-x)^3 - 2(-x)$

$$=-x^3+2x$$

خاصية التوزيع
$$= -(x^3 - 2x)$$

$$f(x) = x^3 - 2x$$
 الدالة الأصلية = $-f(x)$

f(-x) = -f(x) أي أن الدالة فردية؛ لأن

التاريخ: / ١٤٤٣/

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

$$h(x) = x^5 - 2x^3 + x$$
 (6C)

$$g(x) = 4\sqrt{x} \quad \textbf{(6B)}$$

$$f(x) = \frac{2}{x^2}$$
 (6A)

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

مسائل مهارات التفكير العليا

54) اكتب: وضّح لماذا يمكن أن يكون للدالة 0 أو 1 أو أكثر من مقاطع . بينما يو جد لها مقطع y واحد على الأكثر x

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

تدريب على اختبار معياري

$$?-2 < x < 3$$
 ما مدى الدالة $f(x) = x^2 + 1$ ، إذا كان مجالها (82)

$$1 < f(x) < 9$$
 C

$$5 < f(x) < 9$$
 A

$$1 \le f(x) < 10$$
 D

$$5 < f(x) < 10$$
 B

إذا كان
$$n$$
 عددًا حقيقيًّا أكبر من 1 ، فأو جد قيمة x بدلالة n في الشكل أدناه.

$$\sqrt{n+1}$$
 C

$$\sqrt{n^2-1}$$
 A

$$n - 1$$
 D

$$\sqrt{n-1}$$
 B

موضوع الدرس: تحليل التمثيلات البيانية للدوال والعلاقات

تم بحمد الله

الواجب في منصة مدرستي

مرصك على حضور الدرس وحل الواجب دليل على تفوقك وتميزك ...

بارك الله جهودك 🌹

